Three Benefits of Manufacturing in the USA

 

Marlin Steel Wire ManufacturingRecently, we talked about several reasons to be optimistic about the future of manufacturing in America. One of the major takeaways from that post was that the number of manufacturing jobs in the U.S. is on the rise once again, and that many companies are beginning to consider moving their production back to American locations.

However, you might be wondering “why it is that companies are considering making the switch to manufacturing in the U.S. once again?” Well, there are actually a number of reasons, including:

#1: Costs

As we mentioned in a previous post, the energy costs associated with operating a U.S.-based manufacturing location are actually going down. However, the cost savings of moving manufacturing to the U.S. go well beyond that for many companies.

For a lot of companies, even though their production has been moved out of the U.S., their R&D facilities have remained here. By basing their manufacturing facilities nearer to their R&D facilities, companies can save time and money when shipping parts and prototype units between the two.

Not only that, but communication between manufacturing and R&D teams is much easier when they are both located in the same region. This eliminates the need for translating terms, speeding up the communication process (team to team as opposed to team to translator to team). Also, this reduces the chances of a miscommunication between a team used to using one kind of measurement to a team that typically uses another kind of measurement: degrees Fahrenheit versus degrees Celsius, for example.

#2: Simplification of Regulations Requirements

One of the major challenges of operating any business in multiple countries is that each country will have different regulations and requirements for the distribution, import, export or manufacture of any products.

By placing your manufacturing in the same country where goods are to be distributed, you can streamline the approval process for many products and make it easier to avoid intellectual property infringement risks.

Having to pay for customs fees and wait for processing on materials, then having to pay export fees and other taxes for the finished products in order to get it to the intended market can quickly become expensive and time-consuming.

Speaking of shipping times…

#3: Reduction in Transit Times

The delay in the ROI for the manufacture of a new product line as it languishes in the cargo storage of a slow, bulky sea vessel can break monthly income projections, and faster air cargo shipments can be prohibitively expensive, while still having to wait for customs processing.

Bringing manufacturing centers into the region where your company’s products will be distributed saves time. This allows you to see a return on your investment sooner rather than later. In addition, this removes a few middlemen from the sales process, reducing markup and allowing prices to be more competitive.

What’s more, this reduction in transit times also means an increased level of flexibility and responsiveness in meeting consumer demands. The faster a company can leverage consumer needs and wants, the better.

For example, if the first run of a product line sells out in record time, a company that bases its manufacturing in the same country it is distributing those products in can strike while the proverbial iron’s hot, putting more of the in-demand product into customer’s hands while it is still in demand. A company that bases its manufacturing overseas, on the other hand, will have to wait for weeks on shipping alone, during which time the enthusiasm for the product may die down or competitors could release off-brand copies of the product.

A company located overseas could prevent an unexpected shortage of a suddenly popular product by massively over-producing everything, but that would be a tremendous waste of time, money and materials.

A Positive Outlook

Of course, there are many more reasons why any specific company might benefit from basing their manufacturing in the U.S., far too many to cover all of them here. Here at Marlin Steel, we’re excited to have the chance to not only witness a resurgence of American manufacturing, but to be a part of it.

With more companies relocating their manufacturing to the U.S., and thus more manufacturing jobs being created, we’re optimistic for the future of the manufacturing industry in the U.S.

Marlin Steel and Material Drying Shelves: Mobile Racks with Casters

 

Marlin Steel Custom Material Washing Shevles

Sometimes, simply creating a custom wire shelf to fit into an existing mount isn’t enough. In a few cases, it is necessary to build an entire custom mount for the custom shelves that hold your precision-engineered parts.

In one recent job, Marlin Steel’s engineers were tasked with creating not only a series of shelves that would be routinely exposed to temperatures in excess of 250 °F (approximately 121 °C) for twelve hours at a time, but a custom shelving unit with wheels that could be hand-pushed which could withstand the same kind of exposure as well.

That’s right, instead of the typical washing processes, this particular shelf would be designed to be used in a specialized drying process.

Making Material Drying Shelves

Just as with the creation process for parts washing baskets, our engineers checked for numerous properties associated with the client’s material drying process before starting the design, including:

  • The temperatures the racks and shelving unit would be exposed to and for how long.
  • The dimensions that the shelving unit should be.
  • The method by which the shelves and the shelving unit would be moved.
  • Desired spacing for mesh to accommodate parts.
  • Whether or not the shelf would be exposed to specific chemicals or physical stresses such as vibration.
  • Weight distribution of parts on the shelves.
  • Number of units to be manufactured.

These were just a few of the considerations that went into the design of the shelves and the shelving unit.

On top of these concerns, it was important for this particular manufacturing job that the shelving units and the shelves themselves be free of sharps, edges, burrs, and welding/laser splatter. This was partly because the unit was intended to be hand-pushed from one phase of the process to the other. Sharps and other irregularities pose an injury hazard, as well as preventing smooth operation of the individual shelves.

Based on the specifications provided by the client, Marlin Steel’s engineers began designing the wire racks and the shelving unit to hold them. Grade 304 stainless steel was used for the wire racks and the shelving unit alike because this grade of steel was cost-effective for the client while being able to withstand the temperatures that were expected of the drying process. Since no corrosives would be used in the drying process, a more corrosion resistant grade of steel was not necessary.

Using the precision of automated manufacturing lasers, wire benders (including machines specifically designed to minimize burrs and sharps), and welders, Marlin Steel’s engineers were able to complete the shelving unit and the racks quickly, and with minimal splatter that was easily cleaned.

Wheeling the Shelves in Place

Marlin Steel Material Drying ShelvesOf course, with the units being moved by hand, there had to be an easy method of pushing the shelving units from one place to the next. The most natural solution was, of course, to add wheels to the bottom of the shelving unit.

The two primary challenges with this issue were to:

  1. Find a wheel that could withstand the temperatures of the drying process without wearing out;
    AND
  2. Mount the wheel in such a way that it would not interfere the movement of the shelving units into the dryer.

Neither of these challenges proved to be very difficult.

For the first issue, Marlin Steel’s engineers used a set of specially-made Nonmarking High-Temperature Caster wheels. With a maximum capacity of 700 lbs. and the ability to withstand temperatures of up to 475 °F (246 °C), these wheels were built to handle stresses that are well over the design limits of the drying process.

As for the second issue, it was a simple matter to design the shelving unit in such a way that the wheels would not exceed the dimensions of the base of the shelving unit, even while swiveling.

With every order, there are always specific needs and challenges that have to be addressed. However, with an experienced and talented team of engineers, and the precision made possible by sophisticated automated manufacturing techniques, almost any challenge can be overcome so that you can have “quality engineered quick” for your own metal form needs.

The Benefits of Automated Welding in Three Dimensions

 

Ideal Welding Machine - Marlin SteelFor most automated welders, the welding heads can only move along a flat plane. You can program X and Y coordinates into the welder, but all too often, there are vertical welds that need to be completed as well.

For the vast majority of automated welders, a vertical weld requires that either:

  1. The weld is handled manually, slowing the welding process down which drives up production time and cost and reduces quality and negating the advantages of automation.
    OR
  2. The piece being welded is removed and re-positioned manually so that the “vertical” weld can be done. This reduces the chance of a quality part since when removing the part from the work holding fixture, it is time consuming and likely to cause accretive tolerance issues.

Neither of the above solutions are truly optimal. Both require manual labor to work around the limitations of the automated welder, and carry with them all of the risks associated with doing the weld work manually.

This is why an automated welder with three-dimensional weld capabilities is the best way to ensure the best weld quality in metal forms. Thankfully, with the arrival of the IDEAL welder, Marlin Steel now has a welding machine with the ability to handle welds on the X, Y, and Z axes.

Benefits of 3D Welding

Marlin Steel Ideal Welding Machine - 10 ft tablesBecause the IDEAL welder can move in three dimensions, it can perform all of the welding actions that are required to complete large parts (10’ feet x 4’!). This ensures a consistent quality of welds from the first part that goes into the machine to the last.

Unlike people who get fatigued after performing repetitive tasks for hours on end, an automated welder will never miss an intersection. Not only that, but automated welders can complete weld operations much faster than a human can, reducing the chances that blisters and other heat stress deformities will occur.

Also, because the machine can move the welding head vertically as well as left and right, there is no need for a human operator to move the piece being welded, which means there is no downtime as the part is manually adjusted so that the welder can reach a specific intersection. Less downtime equals more welds being completed, which means more parts being finished per hour than what would be possible if the machine required manual assistance to reach certain intersections of the parts being welded (and far more than doing it by hand would).

For many parts that require a high level of precision in the final dimensions of the product, the IDEAL welder is perfect for performing welds. Not only does an automated welder never miss an intersection that it’s been programmed to weld, but with the minimal deformity of the welds made by this machine, large-scale welding of parts for a product line can be made almost effortless. Every weld done by the IDEAL welder will be consistent, from the first weld to the 10,000th weld, so delicate parts with specific shape requirements can be mass-produced using one of these machines.

Bringing an IDEAL Level of Safety

One of the biggest benefits of a 3D welding capable machine is that it provides a greater level of safety than a standard machine that needs manual adjustment and assistance in completing complex welds.

With a machine that only welds along a flat plane, human operators have to step in and help the machine by hand flattening the part. Sometimes they warp the part too much one way or the other and certainly stress all the welds almost breaking them.

With a 3D-capable welder, the operator can safely stay away from the part being processed, and minimize his or her exposure to welder-related work injuries.

In short, the three-dimensional weld capabilities of the IDEAL welder makes weld jobs quicker, more consistent, and safer than ever before. To learn more about our new automated welder and how it affects the manufacture of your wire forms, contact Marlin Steel today!

Controlling the IDEAL Automated Welder

 

Ideal Automated Welder - Marlin SteelFor any piece of automated manufacturing equipment, whether it is a metal wire bending arm, a precision laser-cutter, or an extraordinarily sophisticated welder with multiple adjustable welding heads, it takes both hardware and software in order for the machine to work right.

The control mechanism for the Versaweld CSR102-1230-3-MFDC NC Jig Welding System from IDEAL is no exception to this rule. In fact, this revolutionary new welding machine possesses two different sets of controls: one for controlling the motion of the machine (CNC) and a separate, dedicated control for the welding heads themselves.

Controlling the Machine

The CNC controller for the machine itself is a SINUMERIK 840 DSL 32-Bit-Microprocessor from Siemens. What does this particular controller do? It enables:

  • Digital control of up to 32 axes. Basically, it can control every joint of the machine at the same time, in different directions.
  • The ability to store 500 different motion programs on an included 1 gigabyte flash card.
  • Teach-in operation for programming the travel of the machine’s parts.
  • Program testing and correction.
  • Diagnostics of current production run.

These are just a few of the capabilities of the machine controller that the IDEAL welder uses to control the movements of the machine’s arms while in operation. This device boasts a LCD display with an alphanumeric keyboard to make it easier for the operator to program operations manually when needed.

This control mechanism also sports a USB-based interface to allow the import or export of data.

Controlling the Welder

The operations for the welding heads are managed by a separate control mechanism than the one responsible for the movement of the “arms.”

Ideal Welding Machine - Marlin Steel

The weld controller is responsible for controlling:

  • Weld, squeeze, and hold time,
  • Memory for weld programs,
  • Up and Down slope,
  • Pulse weld operation; AND
  • Heat percentage (current intensity).

By placing these operations on a separate controller, the IDEAL welder is able to have millisecond-fast operations for the welding head, even as the arm is in motion.

The controller for the welder is a Medium Frequency DC (MFDC) Welding Controller. It is the 1,000-cycles technology of this controller that enables the welder to achieve its 2/1,000 of a second weld speed, allowing for a higher-quality surface finish of welded parts and reducing spatter, sharps, and other undesirable deformations to a welded part.

Overall, the highly sophisticated controllers and the software that run them allow the Versaweld NC Jig welder to fulfill a variety of welding tasks that would be deemed impossible for other machines. With the unit now on the Marlin Steel manufacturing floor being the only one outside of Germany, we are in a unique position among American manufacturers to bring quality engineered quick with the best quality welds.

The IDEAL Loading Table

 

Marlin Steel Ideal Welding Machine - 10 ft tablesWe’ve talked about how the IDEAL welder’s welding speed and the maneuverability of its welding heads enable it to quickly weld irregular shapes that standard machines simply can’t do. From vertical welds to 3D movement that enables welding along a rounded edge, our new IDEAL welder can handle many welding tasks that would have been impossible to automate with a less capable welder.

Today, we’re going to discuss another feature of the IDEAL welder: its enormous welding table.

Bigger is Better for Welding

For the vast majority of automated welders out there, a 4’ X 4’ table is the norm. This allows for parts that are up to roughly 16 square feet to be loaded and welded.

The IDEAL welder, on the other hand, boasts a 10’ X 4’ table, enabling much larger parts to be welded. With 40 sq. ft. of weld area to work with, the IDEAL welder is able to handle some of the biggest welding jobs out there.

Combine the IDEAL welder’s huge table size with the ability to handle vertical welds, irregular (non-90° angle) welds and on-the-fly welding height adjustments, it becomes possible to completely automate very large, complicated welding jobs.

Imagine a metal form that is 1’ X 3’ X 5’ for its height, width, and length. A typical welding machine’s table might fit the width of the part, but be completely unable to accommodate the length and height of the part without serious retooling or manual assistance. The IDEAL welder, on the other hand, could accommodate such a part with room to spare.

Ideal Welding Machine - Marlin SteelNot only is the table of the IDEAL welder large enough to accommodate such large parts, the fact that the upper welding arms can elevate themselves up to 400 mm (15.7”) above the table and the lower welding arms can move 200 mm (7.8”) below the table.

The sheer size of the welding area and the ability to weld at different elevations both above and below the table is a huge advantage for welding especially large or irregularly-shaped parts.

If you have a need to manufacture large, precision-crafted parts that have irregular shapes, the IDEAL automated welder is the best way to get the precision of an automatic weld combined with the detail work on rounded edges that would otherwise only be possible with manual welding techniques.

Get the best weld quality on your big projects today with our new automated welder from IDEAL Welding Systems!

The IDEAL Welder’s Turning Heads

 

Ideal Automated Welder - Marlin SteelWhen we were on the hunt for a new automated welding machine, we knew we needed a machine that would be quick, reliable, and versatile. With the ability to finish welds in two milliseconds, the CSR102 from IDEAL definitely met the quickness requirement. Also, the ability to make welds in three dimensions allow this new welder to make welds at every intersection in a wire basket by itself, which translates into incredibly consistent, reliable welds.

But, what about the versatility of the machine? What features help to make this machine able to adapt to nearly any welding job?

Lower and Upper Z-Axis Welding Heads

The use of four welding heads sounds like a good start to ensuring versatility. That’s right, the CSR102 comes with two pairs of welding heads, one pair on the upper Z axis and one pair for the lower Z axis.

All of the welding heads, both for the top and the bottom are equipped with servomotors that allow for height adjustments on the fly. Needless to say, this feature is invaluable for objects that have welds which need to be made at multiple heights – not on a flat plane. The upper welding heads can shift up to 400 mm up and down, while the lower welding heads can move up to 200 mm.

Two pairs of welding heads allow the CSR102 to make welds along both the upper and lower areas of a given part or wire form with ease. Sheet metal fabrications like housings and consoles and electronic panels in three dimensions are also welded precisely, consistently and fast.

The Pincer Welding Head

Ideal Automated Welder - Marlin Steel Beyond the upper and lower z-axis welding heads, the CSR102 also possesses a special pincer-type welding head that it uses to make vertical welds.

This particular head comes equipped with two separate servos, one to raise and lower the head and one to allow it to rotate 359° of a full circle! One of two heads that can swivel 359 degrees.

A typical welding machine can only do welds at a 90° angle. If all of your welds are taking place on perfectly square forms, this is fine. However, for rounded shapes, such as our round wire baskets or wire guards or wavy shapes, completing intersection welds can be tricky if you can’t rotate the welding head to match the actual shape of the basket or wire product. This often leads to production craftsman having to do welds manually, or trying to move the part into place for the machine to weld while it’s in operation (which can be insanely dangerous and we recommend that you avoid doing this).

The free range of motion that the pincer welding head enjoys allows it to complete complicated, rounded welds quickly and efficiently, without the interference of the operator. This keeps the operator away from the moving machinery and out of harm’s way, while minimizing the amount of time it takes to complete weld operations and time spent adjusting parts in the machine.

Thanks to the number of welding heads that the IDEAL welder employs, and the free range of motion that the attached servomotors grant them, the Versaweld CSR102 certainly lives up to the versatility implied by its name.

See how our new welding system can be used for your own production lines today!

An IDEAL Welding Speed

 

Ideal Automated Welder at Marlin SteelRecently, we proudly announced the arrival of a new IDEAL welding systems welder to the Marlin Steel production facility. In that announcement, we briefly discussed a few of the benefits that this machine will bring to our company’s manufacturing capabilities.

Today, we’ll be taking a closer look at the advantages that the welding speed of this new automated welder provides, but first…

How Fast is it?

The Versaweld CSR102-1230-3-MFDC NC Jig Welding System from IDEAL Welding Systems can complete a weld in two milliseconds. That’s 2/1,000 of a second. That is literally many times faster than a human eye blink (which takes 100-400 milliseconds). That’s right, in the time it takes you to blink, this welding system could, in theory, complete up to 50 weld operations.

Most other automated welding machines take 60/1,000 of a second to complete a weld.

What are the Benefits of This Speed?

Ideal Welder - Marlin SteelFaster welds, in and of themselves, mean that this machine can complete more welds than a traditional welding machine. In the time it would take a standard automated welder to complete 2 welds, our new IDEAL welder could finish 60 welds. This means that this welder could significantly increase our production capacity.

However, the ability to complete more welds in less time is only the beginning of the advantages offered by the two millisecond weld speed of our new automated welder.

By finishing weld operations so quickly, the Versaweld CSR102 uses less flash, which translates into less blistering. Typically, joining two pieces of metal with a welder takes time, heating the metal and causing discoloration or bubbling. Because our new welder from IDEAL can make welds so quickly, the metal being joined doesn’t get as overheated and doesn’t form as many blisters.

Fast weld speeds also prevent other deformities in the weld, such as sharps or upsets that can deform a delicate wire form’s shape ever so slightly. Even worse, with a slower weld speed, parts can begin bowing (curving like a potato chip) instead of remaining flat. The more intersections that need to be welded together, the more chances there are for a severe deformity in the wire form to occur.

Typically, such deformities place extra strain on the wire form, causing it to become more prone to failure. By eliminating the possibility of such stresses on the frame of the final product, 2 millisecond welds allow the wire form to last for longer without failing.

In short, faster welds help to ensure the best weld quality possible in metal forms.

With the addition of the IDEAL welder, we can deliver quality engineered quick better than ever before. Contact us to learn more.